B.A./B.Sc. $4^{\text {th }}$ Semester (General) Examination, 2022 (CBCS)
 Subject: Mathematics
 Course: BMG4SEC21
 (Vector Calculus)

Time: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any five questions:

(a)

Prove that $\frac{d}{d t}\left(\vec{r} \cdot \frac{d \vec{r}}{d t}\right)=\left(\frac{d \vec{r}}{d t}\right)^{2}+\vec{r} \cdot \frac{d^{2} \vec{r}}{d t^{2}}$
(b) Show that $\frac{d}{d t}(\vec{A} \times \vec{B})=\vec{A} \times \frac{d \vec{B}}{d t}+\frac{d \vec{A}}{d t} \times \vec{B}$
(c) Show that the following vectors are coplanar:

$$
3 \vec{a}-7 \vec{b}-4 \vec{c}, 3 \vec{a}-2 \vec{b}+\vec{c}, \vec{a}+\vec{b}+2 \vec{c}
$$

where $\vec{a}, \vec{b}, \vec{c}$ are any three non-coplanar vectors.
(d) If $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ be unit vectors satisfying the condition $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=0$, then show that $\vec{\alpha} \cdot \vec{\beta}+\vec{\beta} \cdot \vec{\gamma}+\vec{\gamma} \cdot \vec{\alpha}=-\frac{3}{2}$.
(e) Find a unit vector, in the plane of the vectors $(\hat{i}+2 \hat{j}-\hat{k})$ and $(\hat{i}+\hat{j}-2 \hat{k})$, which is perpendicular to the vector $(2 \hat{i}-\hat{j}+\hat{k})$.
(f) In any triangle ABC , with usual notations, prove that $c^{2}=a^{2}+b^{2}-2 a b \cos C$.
(g) Show that the points $(2,4,6),(3,4,5),(4,4,4)$ and $(5,4,3)$ are coplanar.
2. Answer any two questions:
(a) Let $f=x^{3}+y^{3}+z^{3}$; find the directional derivative of f at $(1,-1,2)$ in the direction of the vector $\hat{i}+2 \hat{j}+\hat{k}$
(b) Find grad f if $\mathrm{f}=\mathrm{x}^{2}+\mathrm{y}^{2}$ and determine its magnitude and direction at (3,4).
(c) Show that $\vec{\nabla} \times \vec{\nabla} \times \vec{F})=\vec{\nabla}(\vec{\nabla} \cdot \vec{F})-\vec{\nabla}^{2} \vec{F}$
(d) A particle moves along the curve $\mathrm{x}=\mathrm{e}^{-\mathrm{t}}, \mathrm{y}=2 \operatorname{cost}, \mathrm{z}=2 \sin 3 \mathrm{t}$. Determine the velocity and acceleration at any time t and their magnitude at $\mathrm{t}=0$.
(a) (i) Prove, by definition of scaler product $\cos (\vec{A}+\vec{B})=\cos \vec{A} \cos \vec{B}-\sin \vec{A} \sin \vec{B}$
(ii) Give the definition of vector product of two vectors. Find a unit vector perpendicular to each vector $\vec{\alpha}=4 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{\beta}=-2 \hat{i}+\hat{j}-2 \hat{k}$
(b) (i) If $\vec{a}+\vec{b}+\vec{c}=0$, show that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
(ii) Given $\vec{f} \cdot \frac{d \vec{f}}{d t}=0$, prove that \vec{f} is a constant.
(c) (i) Show that the vector $\vec{V}=\left(4 x y-z^{3}\right) \hat{i}+2 x^{2} \hat{j}-3 x z^{2} \hat{k}$ is irrotational. Also show that \vec{V} can be expressed as the gradient of some scaler function ϕ.
(ii) If \vec{F} is a continuously differentiable vector point function such that $\operatorname{div} \vec{F}=0$, then there exists another vector point function \vec{f} such that $\vec{F}=\operatorname{curl} \vec{f}$.
(d) (i) Find div \vec{F} and curl \vec{F} where $\vec{F}=\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$
(ii) Show that $\nabla^{2} \phi(r)=\phi^{\prime \prime}(r)+\frac{2}{r} \phi^{\prime}(r)$ where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$

B.A./B.Sc. $4^{\text {th }}$ Semester (General) Examination, 2022 (CBCS)
 Subject: Mathematics
 Course: BMG4SEC22
 (Theory of Equations)

Time: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any five questions:

(a) Find the remainder when $x^{3}+3 \mathrm{p} x+\mathrm{q}$ is divided by $x-\alpha$.
(b) Form an equation of lowest degree with real coefficients having -2 i as a root.
(c) Form an equations of degree four with integral coefficients, where two of the roots are
(d) Show that the equation $3 x^{5}-4 x^{2}+8=0$ has at least two imaginary roots.
(e) State Descartes' rule of sign for positive roots.
(f) If α, β, γ be the roots of the cubic, $x^{3}-\mathrm{p} x^{2}+\mathrm{q} x+\mathrm{r}=0$, find the value of

$$
\begin{equation*}
\sum(\alpha-\beta)^{2} \tag{2}
\end{equation*}
$$

(g) Find the rational roots of $6 x^{4}-x^{3}+x^{2}-5 x+2=0$

2. Answer any two questions

(a) Solve $x^{3}-6 x-9=0$, by Cardan's method.
(b) Show that the roots of $\frac{1}{x-a}+\frac{1}{x-b}+\frac{1}{x-c}=\frac{1}{x}$, (where $\left.\mathrm{a}>0, \mathrm{~b}>0, \mathrm{c}>0\right)$ are all real.
(c) If α, β, γ be the roots of the cubic, $a x^{3}+3 b x^{2}+3 c x+d=0$, find the value of $(2 \alpha-\beta-\gamma)(2 \beta-\gamma-\alpha)(2 \gamma-\alpha-\beta)$
(d) Reduce the reciprocal equation $x^{5}-6 x^{4}+7 x^{3}+7 x^{2}-6 x+1=0$ to its standard form and solve it.
3. Answer any two questions
(a) (i) If the equation $x^{4}+\mathrm{a} x^{3}+\mathrm{b} x^{2}+\mathrm{c} x+\mathrm{d}=0$ has three equal roots, prove that each of them is equal to $\frac{6 c-a b}{3 a^{2}-8 b}$.
(ii) Reduce the equation $4 x^{4}-85 x^{3}+357 x^{2}-340 x+64=0$ to a reciprocal equation and solve it.
(b) (i) Solve the biquadratic equation $x^{4}+5 x^{3}+x^{2}-13 x+6=0$.
(ii) Remove the fractional coefficients of the equation $2 x^{3}-\frac{3}{2} x^{2}-\frac{1}{8} x+\frac{3}{16}=0$.
(c) (i) Show that the equation $x^{3}-2 x-5=0$ has no negative real root.
(ii) If α, β, γ be the roots of the equation $x^{3}+\mathrm{p} x^{2}+\mathrm{q} x+\mathrm{r}=0$, then find the equation whose roots are $\beta+\gamma, \gamma+\alpha$ and $\alpha+\beta$.
(d) (i) Transform the equation $4 x^{4}+3 x^{3}-4 x^{2}-5 x+2=0$ to one with unity as its leading coefficient.
(ii) Apply Descartes' rule of signs to find the nature of the roots of the equation $x^{4}+16 x^{2}+7 x-11=0$.

B.A./B.Sc. $4^{\text {th }}$ Semester (General) Examination, 2022 (CBCS)
 Subject: Mathematics
 Course: BMG4SEC23
 (Number Theory)

Time: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any five questions:

(a) Let a, b be two integers. If $a \mid b$ and $b \mid a$, then prove that $a= \pm b$.
(b) If n is even positive integer, then show that $\phi(2 n)=2 \phi(n)$.
(c) Find the least positive residues in $2^{44}(\bmod 89)$.
(d) If $\operatorname{gcd}(a, b)=1$, then show that $\operatorname{gcd}(a+b, a-b)=1$ or 2 .
(e) If $a x \equiv a y(\bmod m)$ and $\operatorname{gcd}(a, m)=1$, then prove that $x \equiv y(\bmod m)$.
(f) Find the remainder if $1!+2!+3!+\ldots+100$! is divided by 15 .
(g) Find the number of integers less than 864 and prime to 864.
2. Answer any two questions:
(a) Using division algorithm prove that the square of any integer is of the form 5 k or $5 k \pm 1, \mathrm{k}$ is an integer.
(b) If $\operatorname{gcd}(a, m)=1$, then show that the linear congruence $a x \equiv b(\bmod m)$ has unique solution.
(c) Show that $a^{18}-b^{18}$ is divisible by 133 if a and both are prime to 133 .
(d) Define Euler's ϕ function. If $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are prime to each
other then show that $\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{r}}\right)$.

3. Answer any two questions:

(a) (i) If $d=\operatorname{gcd}(a, b)$, then prove that $\frac{a}{d}$ and $\frac{b}{d}$ are integers prime to each other.
(ii) If $\operatorname{gcd}(a, 4)=2=\operatorname{gcd}(b, 4)$, then show that If $\operatorname{gcd}(a+b, 4)=4$.
(iii) Find the general solution in integer of the equation If $7 x+11 y=1$.
(b) (i) Prove that any positive integer is either 1 or prime or it can be expressed as the product of primes, the representation being unique except for the order of the prime factors.
(ii) If p and $p^{2}+8$ be both prime numbers, then show that $p=3$.
(c) (i) Find two integers u and v such that $\operatorname{gcd}(95,102)=95 u+102 v$.
(ii) Solve the linear congruence $7 x \equiv 3(\bmod 15)$.
(d) (i) Define totally multiplicative function. Give an example to show that if $f(n)$ is totally [2+3] multiplicative then $\sum_{\frac{d}{n}} f(d)$ need not also be totally multiplicative.
(ii) State and prove Mö bius inversion theorem.

