B.A./B.Sc. 4th Semester (General) Examination, 2022 (CBCS) Subject: Mathematics Course: BMG4SEC21 (Vector Calculus)

Time: 2 Hours

Full Marks: 40

 $5 \times 2 = 10$

[2]

 $2 \times 5 = 10$

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1. Answer any five questions:

Prove

(a)

that
$$\frac{d}{dt}(\vec{r}.\vec{dr}) = (\vec{dr})^2 + \vec{r}.\vec{dt}^2$$
 [2]

Show that $\frac{d}{dt}(\vec{A} \times \vec{B}) = \vec{A} \times \frac{d\vec{B}}{dt} + \frac{d\vec{A}}{dt} \times \vec{B}$ [2]

(c) Show that the following vectors are coplanar: [2] $3\vec{a} - 7\vec{b} - 4\vec{c}, 3\vec{a} - 2\vec{b} + \vec{c}, \vec{a} + \vec{b} + 2\vec{c}$

where \vec{a} , \vec{b} , \vec{c} are any three non-coplanar vectors.

(d) If $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ be unit vectors satisfying the condition $\vec{\alpha} + \vec{\beta} + \vec{\gamma} = 0$, then show that [2] $\vec{\alpha}.\vec{\beta} + \vec{\beta}.\vec{\gamma} + \vec{\gamma}.\vec{\alpha} = -\frac{3}{2}$.

(e) Find a unit vector, in the plane of the vectors $(\hat{i}+2\hat{j}-\hat{k})$ and $(\hat{i}+\hat{j}-2\hat{k})$, which is [2]

perpendicular to the vector $(2\hat{i} - \hat{j} + \hat{k})$.

(f) In any triangle ABC, with usual notations, prove that $c^2 = a^2 + b^2 - 2ab \cos C$. [2]

(g) Show that the points (2,4,6), (3,4,5), (4,4,4) and (5,4,3) are coplanar.

2. Answer any two questions:

- (a) Let $f=x^3+y^3+z^3$; find the directional derivative of f at (1,-1,2) in the direction of the vector [5] $\hat{i}+2\hat{j}+\hat{k}$
- (b) Find grad f if $f=x^2+y^2$ and determine its magnitude and direction at (3,4). [5]
- (c) Show that $\vec{\nabla} \times (\vec{\nabla} \times \vec{F}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{F}) \vec{\nabla}^2 \vec{F}$ [5]
- (d) A particle moves along the curve $x = e^{-t}$, y = 2cost, z = 2sin3t. Determine the velocity and [5] acceleration at any time t and their magnitude at t=0.

3. Answer any two questions

(a) (i) Prove, by definition of scaler product $\cos(\vec{A} + \vec{B}) = \cos \vec{A} \cos \vec{B} - \sin \vec{A} \sin \vec{B}$ [5] (ii) Give the definition of vector product of two vectors. Find a unit vector perpendicular [5]

to each vector
$$\vec{\alpha} = 4\hat{i} - \hat{j} + 3\hat{k}$$
 and $\vec{\beta} = -2\hat{i} + \hat{j} - 2\hat{k}$

(b) (i) If
$$\vec{a} + \vec{b} + \vec{c} = 0$$
, show that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ [5]
(ii) $\vec{a} \neq \vec{c}$

Given
$$\vec{f} \cdot \frac{df}{dt} = 0$$
, prove that \vec{f} is a constant. [5]

(c) (i) Show that the vector $\vec{V} = (4xy - z^3)\hat{i} + 2x^2\hat{j} - 3xz^2\hat{k}$ is irrotational. Also show that \vec{V} can be expressed as the gradient of some scaler function ϕ .

- (ii) If \vec{F} is a continuously differentiable vector point function such that [5] $div\vec{F} = 0$, then there exists another vector point function \vec{f} such that $\vec{F} = curl \vec{f}$.
- (d) (i) Find div \vec{F} and curl \vec{F} where $\vec{F} = (x^3 + y^3 + z^3 3xyz)$

(ii) Show that
$$\nabla^2 \phi(r) = \phi''(r) + \frac{2}{r} \phi'(r)$$
 where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ [5]

B.A./B.Sc. 4th Semester (General) Examination, 2022 (CBCS) Subject: Mathematics Course: BMG4SEC22 (Theory of Equations)

Time: 2 Hours Full Marks: 40		
	The figures in the margin indicate full marks.	
(Candidates are required to write their answers in their own words as far as practicable.	
	[Notation and Symbols have their usual meaning]	
1. Ansv	ver any five questions:	$5 \times 2 = 10$
(a)	Find the remainder when $x^3 + 3px + q$ is divided by x- α .	[2]
(b)	Form an equation of lowest degree with real coefficients having -2i as a root.	[2]
(c)	Form an equations of degree four with integral coefficients, where two of the roots a i and $\frac{1}{\sqrt{2}}$.	are [2]
(d)	Show that the equation $3x^5 - 4x^2 + 8 = 0$ has at least two imaginary roots.	[2]
(e)	State Descartes' rule of sign for positive roots.	[2]

 $2 \times 10 = 20$

[5]

[5]

(f)	If α , β , γ be the roots of the cubic, $x^3 - px^2 + qx + r = 0$, find the value of	[2]
	$\sum (\alpha - \beta)^2$.	
(g)	Find the rational roots of $6x^4 - x^3 + x^2 - 5x + 2 = 0$	[2]
2. Answer	any two questions	2×5 = 10
(a)	Solve x^3 -6x-9=0, by Cardan's method.	[5]
(b)	Show that the roots of $\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} = \frac{1}{x}$, (where a>0, b>0, c>0)	[5]
(c)	are all real. If α , β , α be the roots of the cubic, $\alpha r^3 + 3br^2 + 3cr + d = 0$, find the value of	[5]
(C)	$(2\alpha-\beta-\gamma)(2\beta-\gamma-\alpha)(2\gamma-\alpha-\beta)$	[3]
(d)	Reduce the reciprocal equation $x^{5}-6x^{4}+7x^{3}+7x^{2}-6x+1=0$ to its standard form and so	olve [5]
	it.	
3. Answer	any two questions	$2 \times 10 = 20$

3. Answer any two questions $2 \times 10 = 20$

(a)	(i)	If the equation $x^4+ax^3+bx^2+cx+d=0$ has three equal roots, prove that each of them is	[5]
		equal to $\frac{6c-ab}{3a^2-8b}$.	
	(ii)	Reduce the equation $4x^4$ - $85x^3$ + $357x^2$ - $340x$ + $64=0$ to a reciprocal equation	[5]
		and solve it.	
(b)	(i)	Solve the biquadratic equation $x^4+5x^3+x^2-13x+6=0$.	[5]
	(ii)	Remove the fractional coefficients of the equation $2x^3 - \frac{3}{2}x^2 - \frac{1}{8}x + \frac{3}{16} = 0$.	[5]
(c)	(i)	Show that the equation $x^3-2x-5=0$ has no negative real root.	[5]
	(ii)	If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, then find the equation whose roots are $\beta + \gamma$, $\gamma + \alpha$ and $\alpha + \beta$.	[5]
(d)	(i)	Transform the equation $4x^4+3x^3-4x^2-5x+2=0$ to one with unity as its leading coefficient.	[5]
	(ii)	Apply Descartes' rule of signs to find the nature of the roots of the equation $x^4+16x^2+7x-11=0$.	[5]

B.A./B.Sc. 4th Semester (General) Examination, 2022 (CBCS) Subject: Mathematics Course: BMG4SEC23 (Number Theory)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1. Answer any five questions:		
(a)	Let <i>a</i> , <i>b</i> be two integers. If <i>a</i> <i>b</i> and <i>b</i> <i>a</i> , then prove that $a = \pm b$.	[2]
(b)	If n is even positive integer, then show that $\phi(2n) = 2\phi(n)$.	[2]
(c)	Find the least positive residues in $2^{44} \pmod{89}$.	[2]
(d)	If $gcd(a,b)=1$, then show that $gcd(a+b,a-b)=1$ or 2.	[2]
(e)	If $ax \equiv ay \pmod{m}$ and $gcd(a,m)=1$, then prove that $x \equiv y \pmod{m}$.	[2]
(f)	Find the remainder if $1!+2!+3!++100!$ is divided by 15.	[2]
(g)	Find the number of integers less than 864 and prime to 864.	[2]

2. Answer any two questions: $2 \times 5 = 10$

- (a) Using division algorithm prove that the square of any integer is of the form 5k or [5] $5k \pm 1$, k is an integer.
- (b) If gcd(a,m)=1, then show that the linear congruence $ax \equiv b \pmod{m}$ has unique [5] solution.

(c) Show that
$$a^{18} - b^{18}$$
 is divisible by 133 if a and both are prime to 133. [5]

(d) Define Euler's
$$\phi$$
 function. If $n = p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$, where p_1, p_2, \dots, p_r are prime to each [5]

other then show that
$$\phi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_r}\right)$$

3. Answer any two questions:

(a)

(i)

If $d = \gcd(a, b)$, then prove that $\frac{a}{d}$ and $\frac{b}{d}$ are integers prime to each other. [3]

- (ii) If gcd(a,4) = 2 = gcd(b,4), then show that If gcd(a+b,4) = 4. [2]
- (iii) Find the general solution in integer of the equation If 7x + 11y = 1. [5]
- (b) (i) Prove that any positive integer is either 1 or prime or it can be expressed as the [6] product of primes, the representation being unique except for the order of the prime factors.
 - (ii) If p and $p^2 + 8$ be both prime numbers, then show that p = 3. [4]

 $2 \times 10 = 20$

- (c) (i) Find two integers u and v such that gcd(95,102) = 95u + 102v. [5]
 - (ii) Solve the linear congruence $7x \equiv 3 \pmod{15}$. [5]
- (d) (i) Define totally multiplicative function. Give an example to show that if f(n) is totally [2+3] multiplicative then $\sum_{\frac{d}{n}} f(d)$ need not also be totally multiplicative.
 - (ii) State and prove Mobius inversion theorem.

[2+3]